Chapter 1 Theories in addition to Experiments Fundamental Quantities in addition to Their Dimension Units Systems of Measurement

Chapter 1 Theories in addition to Experiments Fundamental Quantities in addition to Their Dimension Units Systems of Measurement

Chapter 1 Theories in addition to Experiments Fundamental Quantities in addition to Their Dimension Units Systems of Measurement

Thym, Jolene, Food Writer has reference to this Academic Journal, PHwiki organized this Journal Chapter 1 Introduction Theories in addition to Experiments The goal of physics is to develop theories based on experiments A theory is a “guess,” expressed mathematically, about how a system works The theory makes predictions about how a system should work Experiments check the theories’ predictions Every theory is a work in progress Fundamental Quantities in addition to Their Dimension Length [L] Mass [M] Time [T] other physical quantities can be constructed from these three

Strayer University-Akron Campus OH

This Particular University is Related to this Particular Journal

Units To communicate the result of a measurement as long as a quantity, a unit must be defined Defining units allows everyone to relate to the same fundamental amount Systems of Measurement St in addition to ardized systems agreed upon by some authority, usually a governmental body SI – Systéme International agreed to in 1960 by an international committee main system used in this text also called mks as long as the first letters in the units of the fundamental quantities Systems of Measurements, cont cgs – Gaussian system named as long as the first letters of the units it uses as long as fundamental quantities US Customary everyday units often uses weight, in pounds, instead of mass as a fundamental quantity

Length Units SI – meter, m cgs – centimeter, cm US Customary – foot, ft Defined in terms of a meter – the distance traveled by light in a vacuum during a given time Mass Units SI – kilogram, kg cgs – gram, g USC – slug, slug Defined in terms of kilogram, based on a specific cylinder kept at the International Bureau of Weights in addition to Measures St in addition to ard Kilogram

Time Units seconds, s in all three systems Defined in terms of the oscillation of radiation from a cesium atom Approximate Values Various tables in the text show approximate values as long as length, mass, in addition to time Note the wide range of values Lengths – Table 1.1 Masses – Table 1.2 Time intervals – Table 1.3 Prefixes Prefixes correspond to powers of 10 Each prefix has a specific name Each prefix has a specific abbreviation See table 1.4

Structure of Matter Matter is made up of molecules the smallest division that is identifiable as a substance Molecules are made up of atoms correspond to elements More structure of matter Atoms are made up of nucleus, very dense, contains protons, positively charged, “heavy” neutrons, no charge, about same mass as protons protons in addition to neutrons are made up of quarks orbited by electrons, negatively charges, “light” fundamental particle, no structure Structure of Matter

Dimensional Analysis Technique to check the correctness of an equation Dimensions (length, mass, time, combinations) can be treated as algebraic quantities add, subtract, multiply, divide Both sides of equation must have the same dimensions Dimensional Analysis, cont. Cannot give numerical factors: this is its limitation Dimensions of some common quantities are listed in Table 1.5 Uncertainty in Measurements There is uncertainty in every measurement, this uncertainty carries over through the calculations need a technique to account as long as this uncertainty We will use rules as long as significant figures to approximate the uncertainty in results of calculations

Significant Figures A significant figure is one that is reliably known All non-zero digits are significant Zeros are significant when between other non-zero digits after the decimal point in addition to another significant figure can be clarified by using scientific notation Operations with Significant Figures Accuracy – number of significant figures When multiplying or dividing two or more quantities, the number of significant figures in the final result is the same as the number of significant figures in the least accurate of the factors being combined Operations with Significant Figures, cont. When adding or subtracting, round the result to the smallest number of decimal places of any term in the sum If the last digit to be dropped is less than 5, drop the digit If the last digit dropped is greater than or equal to 5, raise the last retained digit by 1

Conversions When units are not consistent, you may need to convert to appropriate ones Units can be treated like algebraic quantities that can “cancel” each other See the inside of the front cover as long as an extensive list of conversion factors Example: Examples of various units measuring a quantity Order of Magnitude Approximation based on a number of assumptions may need to modify assumptions if more precise results are needed Order of magnitude is the power of 10 that applies

Thym, Jolene Tri-Valley Herald Food Writer

Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales in addition to labels instructions on how to label a point relative to the origin in addition to the axes Types of Coordinate Systems Cartesian Plane polar Cartesian coordinate system Also called rectangular coordinate system x- in addition to y- axes Points are labeled (x,y)

Plane polar coordinate system Origin in addition to reference line are noted Point is distance r from the origin in the direction of angle , ccw from reference line Points are labeled (r,) Trigonometry Review More Trigonometry Pythagorean Theorem To find an angle, you need the inverse trig function as long as example, Be sure your calculator is set appropriately as long as degrees or radians

Problem Solving, cont. Choose equation(s) Based on the principle, choose an equation or set of equations to apply to the problem Substitute into the equation(s) Solve as long as the unknown quantity Substitute the data into the equation Obtain a result Include units Problem Solving, final Check the answer Do the units match Are the units correct as long as the quantity being found Does the answer seem reasonable Check order of magnitude Are signs appropriate in addition to meaningful Problem Solving Summary Equations are the tools of physics Underst in addition to what the equations mean in addition to how to use them Carry through the algebra as far as possible Substitute numbers at the end Be organized

Thym, Jolene Food Writer

Thym, Jolene is from United States and they belong to Tri-Valley Herald and they are from  Pleasanton, United States got related to this Particular Journal. and Thym, Jolene deal with the subjects like Features/Lifestyle; Food; Food Industry; Local News; Restaurants/Dining

Journal Ratings by Strayer University-Akron Campus

This Particular Journal got reviewed and rated by Strayer University-Akron Campus and short form of this particular Institution is OH and gave this Journal an Excellent Rating.