History of White Dwarfs Bessell (1844) Proper motions of Sirius in addition to Procyon wobb

History of White Dwarfs Bessell (1844) Proper motions of Sirius in addition to Procyon wobb www.phwiki.com

History of White Dwarfs Bessell (1844) Proper motions of Sirius in addition to Procyon wobb

Andrews, Earl, Financial Editor has reference to this Academic Journal, PHwiki organized this Journal History of White Dwarfs Bessell (1844) Proper motions of Sirius in addition to Procyon wobble Suggested they orbited “dark stars” Alvan Clark (1862) Found Sirius B at Northwestern’s Dearborn Observatory Procyon B found in 1895 at Lick Was it a star that had cooled in addition to dimmed Spectrum of 40 Eri B observed – an A star! It must be hot Must have small radius to be so faint The first “white dwarf” Adams found Sirius B is also an A star in 1915 From luminosity, R~ 2 x Earth (actually ¾) From orbit, about 1 solar mass Density 105 x water (actually 106) 20th Century History Eddington Gas must be fully ionized so that nuclei could be compacted together Conundrum – as the white dwarf cools, the atoms should recombine, but they can’t because the star can’t swell against gravity R. H. Fowler (1926) Recognized the role of degeneracy pressure in supporting the star Ch in addition to rasekhar (1935) Upper limit to mass supported by electron degeneracy pressure due to limit of velocity of light (1.4 solar masses) Zwicky (1930’s) – Degenerate Neutron Stars Schatzman (1958) – chemical diffusion in strong gravity (plus radiative levitation, winds in addition to mass loss, convective mixing, accretion) Greenstein in addition to Trimble (1967) – Gravitational redshift Hewish in addition to Bell (1967) – Pulsars Interiors in a Nutshell Upper mass limit as long as white dwarf as long as mation is somewhere between 5-9 solar masses – “Inside every red giant is a white dwarf waiting to get out” (Warner) Most have C-O cores, most massive may have O-Ne cores In hot, pre-white dwarfs, neutrinos dominate energy loss When nuclear burning stops, photon cooling dominates interior becomes strongly electron degenerate, mechanical in addition to thermal states decouple, ions are a classical ideal gas Ions eventually crystallize but we still have no empirical evidence as long as this Crystallization releases latent heat in addition to carbon in addition to oxygen may undergo a phase separation on crystallization may also provide heat which would prolong cooling times after crystallization, heat capacity drops, cooling times shorten Interplay of gravitational settling of heavier species in addition to turbulent energy transport (convection) may affect surface abundances As the degeneracy boundary moves outward, it eventually halts the convection At cool enough temperatures H2 as long as ms, in addition to possibly even He2

McCann School of Business and Technology PA www.phwiki.com

This Particular University is Related to this Particular Journal

Masses of White Dwarfs Methodology orbital solutions or binary stars measurements of surface gravity (with a mass-radius relation) model atmospheres with photometry, parallaxes gravitational redshifts asterseismology = 0.58 – 0.59 solar masses About 1/6 of (presumed) single white dwarfs show radial velocity variations White Dwarfs White Dwarfs – DO, DB, DA, DF, DG, DM, DC Classifications NOT analogous to MS – reflect compositions, not temperature DA – hydrogen lines (no other lines, pure H atmosphere) DB – neutral He lines (no hydrogen at all, pure He) DO – ionized He lines (no hydrogen at all, hotter DBs) DC – continuous spectrum, no lines DF, DG, DM (can’t discriminate DA or DB) Heavier atoms sink in gravitational field Above 15,000 K, 15% are non-DA, below 15,000 K, half are non-DA. How do the stars do that NO DB stars between 30,000 in addition to 45,000 K Surface Compositions DA (80% of WDs) in addition to non-DA Most WDs have pure or nearly pure H or He atmospheres DAs found from hottest to coolest Non-DAs start with hot stars DOs as long as Teff > 45,000K with He II or He I in addition to He II DBs as long as Teff < 30,000 with He I only DCs (featureless) as long as Teff < 11,000 NO He-rich WDs between 45,000 in addition to 30,000K Why the DB Gap Simple picture of parallel sequences of H in addition to He-rich objects doesn’t work Accelerated evolution of DBs between 45,000 in addition to 30,000K doesn’t make sense Change in ratio of DAs in addition to DBs around 10-15,000K also hard to explain Mean masses of DAs in addition to DBs are the same Theory of spectral evolution – Fontaine in addition to Wesemael All WDs have a common origin (PNN) with some hydrogen, upper limit of 10-4 solar masses to 10-15 solar masses of hydrogen (recall that 10-4 is the limit where H burning stops) Only about 10-15 is needed to produce an optically thick H layer at the surface Diffusion brings H to surface; by Teff=45,000 K, all WDs have hydrogen atmospheres, so there are no DBs At 30,000 K, the as long as mation of an He ionization zone creates turbulence which mixes the H with He, in addition to leads to He stars (stars with more than 10-13 H have too much H to as long as m a sufficient convection zone, in addition to they remain DAs) Change in DA/non-DA ratio at 11,000 K results from onset of convection from H ionization zone, increases mixing, in addition to more DBs appear But this model doesn’t work Spectral Evolution Model What’s wrong with the spectral evolution model model suggests DAs should have a wide range of hydrogen layers, from 10-4 solar masses to 10-13 solar masses of hydrogen Asteroseismology results suggest all DAs have thick hydrogen layers The model also predicts trace amounts of H in the hottest DB stars (just at the cool edge of the DB gap) H was found with GHRS on HST but at a level way to low (<10-18 solar masses) to have ever permitted this DB to have been a DA in the DB gap The WDs are fed by other sources than PNN subdwarf O in addition to B stars (whose origin is still not clear) IBWDs (interacting-binary white dwarfs) Both of these enter the cooling curve somewhere along the spectral sequence Maybe the DBs come from the IBWDs, in addition to all the DOs become DAs at 45,000 K ( in addition to stay that way) Variable White Dwarfs Asteroseismology with the Whole Earth Telescope (WET) Determine masses, hydrogen masses, rotation rates, magnetic fields ZZ Ceti Stars – extension of Cepheid instability strip Hydrogen ionization zone below the photosphere Temperature range from 10,500 to 13,000 K Amplitudes of 0.01 to 0.3 mag Periods of 3-20 minutes DB pulsators from He ionization zone T ~ 20,000K PG 1159 stars – also pulsators T ~ 130,000 Oxygen ionization zone drives pulsations Periods of minutes Rotation Measuring rotation rates (vsini) shapes of hydrogen line cores rotational variation of polarization in magnetic white dwarfs asteroseismology vsini measurements suggest rotation rates < 8-40 km/sec – very slow! (where does the angular momentum go) Periodic changes in polarization gives two groups, those with rotation periods of a few days, in addition to those with periods >100 years Asteroseismology also gives slow rates Class Problem – What is the approximate rotational velocity of a star with a rotational period of 2 days (assume we are observing it in its equatorial plane) Why Is Slow Rotation a Problem Assume a solar rotation period of 30 days, conserve angular momentum, in addition to estimate the rotation rate if the Sun were shrunk to the radius of the Earth Magnetic Fields Broadb in addition to circular polarization detects fields > 50 MGauss Circular spectropolarimetry limits to 1-50 kG Detected fields range from 3 kG to 1 GG asteroseismology suggests fields of 1 kG Magnetic fields detected at all temperatuers, but more in addition to stronger fields in cool WDs (<16,000K) Does a dynamo as long as m when convection starts Oblique rotators again Neutron Star Oddities The non-pulsar neutron star (Geminga) discovered from x-ray brightness imaged by HST in 1998 (V~25) distance <~400 pc (in front of IS cloud) Teff > 106 K Probably lots of these around The Black Widow Pulsar Eclipsing double, companion R=0.2 RSun, mass of 0.02 MSun Mass transfer spins up pulsar Pulsar is eroding away the companion The Magnetar Magnetic field of 1014 G field cracked pulsar’s crust, producing gamma in addition to x-ray burst burst partially ionized the upper atmosphere of Earth Quark Stars Ages from White Dwarfs Age of the disk – from the coolest WDs found Liebert, Dahn, in addition to Monet (1988, etc) used a sample from the Luyten Half-Second catalog Oswalt from common proper motion binaries Observational problems completeness undetected binaries small sample statistics, especially as long as the coolest, faintest white dwarfs. Need larger samples! Many remaining issues in WD cooling physics C/O ratio in core, phase separation at crystallization Settling of heavier species (22Ne, 56Fe) depth of He layer Age estimated around 10 Gyr Age of the halo in addition to globular clusters still to be done Degenerate Binaries Novae 10 magnitudes or more increase in brightness over a day or two Drop typically 3 mags in a month or two Back to original brightness after a few years or decades White dwarf – low mass main sequence binary Began as wider binary, then common envelope evolution tightens the binary Recurrent novae, dwarf novae Symbiotic Stars – binary separation sufficient that stars don’t interact until companion becomes a giant Spectrum is a cool star + hot accretion disk Mass loss from giants feeds an accretion disk around the white dwarf Nova-like eruptions – due to white dwarf mass accretion or to instabilities in the accretion disk X-ray binaries – neutron star + companion

R Corona Borealis ( in addition to other) Stars RCorBor Stars & Extreme Helium Stars A to G-type supergiants Occasionally dim by ~8 magnitudes Recovery can take a year Veiling by carbon dust from mass loss Highly deficient in hydrogen Helium dominates Carbon greatly enriched Cepheid-like pulsations Heating by 30K per year, shrinking Post-AGB stars Coalesced white dwarf binaries White Dwarf Merger Scenario The camera aspect remains the same, but moves back to keep the star in shot as it exp in addition to s. After the star reaches 0.1 solar radii, an octal is cut away to reveal the surviving disk in addition to white dwarf core. The red caption (x) is a nominal time counter since merger. A rod of length initially 0.1 in addition to later 1 solar radius is shown just in front of the star.

Andrews, Earl American Press Service and Features Syndicate Financial Editor www.phwiki.com

Andrews, Earl Financial Editor

Andrews, Earl is from United States and they belong to American Press Service and Features Syndicate and they are from  Van Nuys, United States got related to this Particular Journal. and Andrews, Earl deal with the subjects like Banking and Financial Services; Financial; Stocks and Equities

Journal Ratings by McCann School of Business and Technology

This Particular Journal got reviewed and rated by McCann School of Business and Technology and short form of this particular Institution is PA and gave this Journal an Excellent Rating.